13,619 research outputs found

    Cooperative Precoding with Limited Feedback for MIMO Interference Channels

    Full text link
    Multi-antenna precoding effectively mitigates the interference in wireless networks. However, the resultant performance gains can be significantly compromised in practice if the precoder design fails to account for the inaccuracy in the channel state information (CSI) feedback. This paper addresses this issue by considering finite-rate CSI feedback from receivers to their interfering transmitters in the two-user multiple-input-multiple-output (MIMO) interference channel, called cooperative feedback, and proposing a systematic method for designing transceivers comprising linear precoders and equalizers. Specifically, each precoder/equalizer is decomposed into inner and outer components for nulling the cross-link interference and achieving array gain, respectively. The inner precoders/equalizers are further optimized to suppress the residual interference resulting from finite-rate cooperative feedback. Further- more, the residual interference is regulated by additional scalar cooperative feedback signals that are designed to control transmission power using different criteria including fixed interference margin and maximum sum throughput. Finally, the required number of cooperative precoder feedback bits is derived for limiting the throughput loss due to precoder quantization.Comment: 23 pages; 5 figures; this work was presented in part at Asilomar 2011 and will appear in IEEE Trans. on Wireless Com

    Cooperative Feedback for Multi-Antenna Cognitive Radio Networks

    Full text link
    Cognitive beamforming (CB) is a multi-antenna technique for efficient spectrum sharing between primary users (PUs) and secondary users (SUs) in a cognitive radio network. Specifically, a multi-antenna SU transmitter applies CB to suppress the interference to the PU receivers as well as enhance the corresponding SU-link performance. In this paper, for a multiple-input-single-output (MISO) SU channel coexisting with a single-input-single-output (SISO) PU channel, we propose a new and practical paradigm for designing CB based on the finite-rate cooperative feedback from the PU receiver to the SU transmitter. Specifically, the PU receiver communicates to the SU transmitter the quantized SU-to-PU channel direction information (CDI) for computing the SU transmit beamformer, and the interference power control (IPC) signal that regulates the SU transmission power according to the tolerable interference margin at the PU receiver. Two CB algorithms based on cooperative feedback are proposed: one restricts the SU transmit beamformer to be orthogonal to the quantized SU-to-PU channel direction and the other relaxes such a constraint. In addition, cooperative feedforward of the SU CDI from the SU transmitter to the PU receiver is exploited to allow more efficient cooperative feedback. The outage probabilities of the SU link for different CB and cooperative feedback/feedforward algorithms are analyzed, from which the optimal bit-allocation tradeoff between the CDI and IPC feedback is characterized.Comment: 26 pages; to appear in IEEE Trans. Signal Processin

    Cooperative Feedback for MIMO Interference Channels

    Full text link
    Multi-antenna precoding effectively mitigates the interference in wireless networks. However, the precoding efficiency can be significantly degraded by the overhead due to the required feedback of channel state information (CSI). This paper addresses such an issue by proposing a systematic method of designing precoders for the two-user multiple-input-multiple-output (MIMO) interference channels based on finite-rate CSI feedback from receivers to their interferers, called cooperative feedback. Specifically, each precoder is decomposed into inner and outer precoders for nulling interference and improving the data link array gain, respectively. The inner precoders are further designed to suppress residual interference resulting from finite-rate cooperative feedback. To regulate residual interference due to precoder quantization, additional scalar cooperative feedback signals are designed to control transmitters' power using different criteria including applying interference margins, maximizing sum throughput, and minimizing outage probability. Simulation shows that such additional feedback effectively alleviates performance degradation due to quantized precoder feedback.Comment: 5 pages; submitted to IEEE ICC 201

    Health Claims Regulation and Welfare

    Get PDF
    Regulation (EC) No 1924/2006, 20 December 2006, requires functional foods manufacturers operating in Europe to provide evidence that the health claims reported on the packaging are truthful. However, most applications reviewed by the European Food Safety Authority (EFSA) have been rejected, leaving food manufacturers with the option of either selling products deprived of their claims or discontinuing their production. This paper analyzes changes in welfare (both producers’ and consumers’) that would occur if the implementation of Reg. (EC) No 1924/2006 resulted in a large-scale health-claim de-labeling of functional food products. To that end, we use one year (2007) of monthly scanner data of sales of conventional and functional yogurt in the Italian market and a discrete-choice random coefficient logit demand model which accounts for consumers’ heterogeneity using the MPEC algorithm developed by Dube et al. (2009) to improve numerical efficiency and accuracy, to assess the issue. Preliminary results show that both producers and consumers can be severely impacted if reporting health-claims on functional products is not allowed; as our results indicate that consumers’ welfare losses are twice as large than producers’ a loosening of EFSA’s requirements might be required to avoid such losses.Health claims regulation, EFSA, welfare, random coefficients, MPEC., Agricultural and Food Policy, Demand and Price Analysis, Industrial Organization, Marketing, Q18, L66, M38,
    corecore